Generators of algebraic curvature tensors based on a (2,1)-symmetry
نویسنده
چکیده
We consider generators of algebraic curvature tensors R which can be constructed by a Young symmetrization of product tensors U ⊗ w or w ⊗ U , where U and w are covariant tensors of order 3 and 1. We assume that U belongs to a class of the infinite set S of irreducible symmetry classes characterized by the partition (2 1). We show that the set S contains exactly one symmetry class S0 ∈ S whose elements U ∈ S0 can not play the role of generators of tensors R. The tensors U of all other symmetry classes from S \ {S0} can be used as generators for tensors R. Using Computer Algebra we search for such generators whose coordinate representations are polynomials with a minimal number of summands. For a generic choice of the symmetry class of U we obtain lengths of 8 summands. In special cases these numbers can be reduced to the minimum 4. If this minimum occurs then U admits an index commutation symmetry. Furthermore minimal lengths are possible if U is formed from torsion-free covariant derivatives of alternating 2-tensor fields. We apply ideals and idempotents of group rings C[Sr] of symmetric groups Sr, Young symmetrizers, discrete Fourier transforms and Littlewood-Richardson products. For symbolic calculations we used the Mathematica packages Ricci and PERMS.
منابع مشابه
Generators of algebraic covariant derivative curvature tensors and Young symmetrizers
We show that the space of algebraic covariant derivative curvature tensors R is generated by Young symmetrized product tensors T ⊗ T̂ or T̂ ⊗ T , where T and T̂ are covariant tensors of order 2 and 3 whose symmetry classes are irreducible and characterized by the following pairs of partitions: {(2), (3)}, {(2), (2 1)} or {(1), (2 1)}. Each of the partitions (2), (3) and (1) describes exactly one s...
متن کاملCurvature collineations on Lie algebroid structure
Considering prolongation of a Lie algebroid equipped with a spray, defining some classical tensors, we show that a Lie symmetry of a spray is a curvature collineation for these tensors.
متن کاملMethods for the construction of generators of algebraic curvature tensors
We demonstrate the use of several tools from Algebraic Combinatorics such as Young tableaux, symmetry operators, the Littlewood-Richardson rule and discrete Fourier transforms of symmetric groups in investigations of algebraic curvature tensors. In [10, 12, 13] we constructed and investigated generators of algebraic curvature tensors and algebraic covariant derivative curvature tensors. These i...
متن کاملShort formulas for algebraic covariant derivative curvature tensors via Algebraic Combinatorics
We consider generators of algebraic covariant derivative curvature tensors R which can be constructed by a Young symmetrization of product tensors W ⊗ U or U ⊗ W , where W and U are covariant tensors of order 2 and 3. W is a symmetric or alternating tensor whereas U belongs to a class of the infinite set S of irreducible symmetry classes characterized by the partition (2 1). Using Computer Alge...
متن کاملMonomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره math.DG/0411056 شماره
صفحات -
تاریخ انتشار 2004